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The problem of the vibrations of an elastic half-space under the effect of an internal 
source of the expansion-compression type was solved in [1]. The~steady motion of an unlim- 
ited elastic medium under the effect of a vibration source with inhomogeneous boundary con- 
ditions was considered in [2], where mainly the dependence of the amplitude of the displace- 
ment of the frequency of the boundary load was investigated. A method is indicated in this 
paper for obtaining the displacement and stress fields in laminar media with plane-parallel 
interfaces if the boundary conditions are given analogously to [2]. For this, the potentials 
are calculated by separation of variables in a spherical coordinate system, and are then 
written in a cylindrical system. As an illustration, theoretical oscillograms of the dis- 
placement on the surface of a half-space under the effect of a "thrust" source are presented. 
An asymptotic formula is obtained for the displacements in the neighborhood of the wave fronts 
under the effect of the vibration source. 

1. In a spherical coordinate system (R, 0, X) we consider a class of sources that are 
symmetric relative to a certain line. We superpose this line on the z axis of a cylindrical 
(r, • z) coordinate system (Fig. i). The z = 0 plane separates the space into parts with 
different physical properties or is the free surface of a half-space. 

On a sphere of radius Re with center at the point (0, O, h) of the cylindrical coordi- 
nate system, let there be given a certain displacement distribution 

uR IR=~o = UR (0) ! (t), ue [R=Ro = Uo (0) / (t) (1 .1)  
or a stress distribution 

aRIR=R o = FR(O)/(t), TROIR=R o = Fo (0)[(t). (1.1)' 

Find the displacement and stress fields in the medium. The problem reduces to solving two 
wave equations 

A~ = aS~tt, AS =b~tt (1.2) 

for the longitudinal ~ and transverse $ potentials under zero initial data 

= ~ t  = 0 ,  ~ = ~ t  = 0 ,  t = 0  (1.3) 
i/Vp, = and the boundary conditions (i.I) or (i.i)'. In (1.2) a = b = I/V s, where Vp 

~(~-2~)/0, V, = ~ -  are the longitudinal and transverse wave velocities, X, ~ are the 
Lam~ parameters, and p is the density of the part of the medium in which the source is. 

Because of the assumption made about symmetry, the unknown functions are independent 
of the angle X and the displacement uy = 0; then the transverse potential has the form $ = 
(0, O, ~) and there are not tangentiaI components of the stress tensor rex = z0X~O (conse- 
quently, u X and TRX did not figure in (i.i), and $ can be written in place of ~ in (1.2) and 
(1.3)). 

Separation of variables permits obtaining expressions for the potentials in the form 

(R, 0, s) = / (s) k,~ An (s) ]/7~ 
n = 0  

7r (R, o, ~) = 7  (*) ~ B. (~) K~ (b..) 
~ o  V ~ .  

4 (=,R1 ] p,~ (cos 0), - -  + C ~ ( s ) - - ' C ~  j 

i' Dn (s) ~ ] / ]  p l  (cos 0), 

(1.4) 

(1.4)' 

where the bar above the functions denotes the Laplace tranaform, s is the Laplace transfor- 
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Fig. i 

marion parameter, K9 is the Macdonald function, v = n+I/2; I, is the modified Bessel func- 
* is the associated Legendre polynomial Since I~(y) tion, Pn is the Legendre polynomial, Pn 

-+oo as y-+oo , and the initial data are zero, then Cn(S) = Dn(S) = 0, n~0. 

A function given on a sphere can be expanded in a series of Legendre polynomials, for 
instance 

FR(O)= ~ anPn (cos 0), Fo(O)= ~ bnP~ (cos 0). (1.5) 
n ~ O  4 = 0  

There are analogous r ep resen ta t ions  for  O R and U O. Now, Using (1.4) amd (1 .4) '  to evaluate  
the displacements and stresse s for R = Re by known formulas, and comparing them with expan- 
sions of the type (1.5), we find the unknown function ~(s) and Bn(s ) and then by using the 
Mellin inversion formula, we obtain an expression for ~ = ~(R, 0, t) and for $ =$(R, 0, t). 

The solution found is valid up to emergence of the initiated waves on the boundary z = 
0. In order to describe the wave reflection-refraction process, expressions must be obtained 
for the potentials ~ and ~ in the cylindrical coordinate system. The formula 

V -f~as Ko,5 (asB) e-a,R 
V ~  Po (cos O) 1~ - - =  i k']~ (kr) e-m-:lPa 

Pa 
0 

dk 

was used in [i], where Pa----I/kS+ a2s2;R ~ = r2+ (h -- z)~'; /0 is the Bessel function. Let us 
derive an analogous formula for the separate component from (1.4) 

-I/R ~ kJ'~ (kr) e -lh-ztp~ dk. 
0 

(1.6) 

Differentiating both sides of the equality (1.6) with respect to z (this can be done because 
of the absolute convergence of the integral in the right side of (1.6), and its arbitrary 
derivative in all space excepting the plane z = h), and performing simple manipulations, we 
obtain a recursion formula for H n 

Hn+l = 2n + t PaHn n Ha-I, H o = t, H 1 = pdas. (1.7) 
n + t ~ n +  1 

The equality 

1/~ Pb 
@ 

(1.8) 

holds for the components from (1.4)'. The functions Qn are connected by the relationship 

Qn+l= 2n~+i Pbbs Qn "+ni Q~_~, Q I = I ,  Q2=pb/bS. (1.9) 

Let us note that (1.7) and (1.9) are valid for Pn(X) and P~(x) (with the replacement of pa/ 
as and Pb/bS by x). 

2. Let us calculate the displacements on the free surface of the half-space, which 
occur because of the action of the "thrust" vibration source [2]. In this case 
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0, t < O, 
/ ( t ) = s i n 2 = ~ o t e ( t ) ,  e ( t ) =  t, t > O ,  

[2 ' ~  1 F~ (O) = % (t + cos 20) = % ~-Po (cos 0) -r- -~ P~ (cos 0) , Fo (0) = 0. 

Then ao = ( 2 / 3 ) z o ,  a t  = 0, a i  ,. ( 4 / 3 ) o o ,  a n = 0, n ~ > 3  in  ( 1 . 5 ) .  Because  o f  the  l i n e a r i t y ,  
the problem dissociates into two ~Ith different boundary conditions: 

a) F~ (0) = ~oPo(cOS O) = ~o; 6) Fa (0) = ooP~(cos 0). 
The first problem is solved in [i], and we write down the solution of the second at once, 
omitting the intermediate calculations. 

Upon incidence of a longitudinal wave (see Fig. i, where p is the incident longitudinal 
wave, pp, ps, and ~ are the reflected longltudlnal, transverse, and Rayle!gh waves excited 
by the p wave) 

u(O= K 3---4V~-/a,p , , , ( k ~ ) i l  e ~(~ " )d~ (2.1) 

f; } |  .ro(kt) : : '  ~v, g-R (g) - - j  
tp ) 

(~) (t) = ~ i  y s lsO~ a)oS st + 5sS q- d 2|s2(s) q- 48s "4- 48 es(i_~,)ds, 

(t) 

where d(s) ?"S e + ~(3 q2 57 + 47 )s t --r- (3 + t57 + 49? ~ 4?S)s 4 + (15 + t35"1, + 6 8 7 " -  367s)s a + 
(t35 + 2t67 ~ 367 ~ --  96~)s a + ( t  .2~ 7)(2t6 --  967~)s + 2t6 -- 96?% u, w a re  the  d i s p l a c e m e n t s  in  the  
r and z d i r e c t i o n ,  tp n - a ( 3 / :  + h ~ _  R,) i s  the  t ime of  a r r i v a l  a t  the  p o i n t  ( r ,  9,  h) o f  the  
l o n g i t u d i n a l  wave; X =. 9oR~/~: ~. --  rb/,r; ~i = hb/'~; ~ = sb/k; ~ = ] / t  + ? ~ ;  ~ = "i/'l + ~'; "~ = a/b; 
~0 = 2=ebR0; ga = 3-~ 2?~gs; g = 2 + gs; B(~) = gS- 4=~i ~ is the contour in the complex g plane 
=hat passes to the right of the imaglnary axis and parallel to it, and branches of the rad- 
icals are determined by the condition arg ~ _-- arg ~ = 0- for ~ >O. 

Upon incidence of a transverse wave (see Fig. i, where s is an incident transverse wave, 
and sp, ss, and R s are the reflected longitudinal, transverse, and Rayleigh waves excited by 
the s wavsst and sps is a conical wave that occurs because of reflection of an sp wave from 
the free surface) 

t g(~)eh(;-'l~)d~ dk dx, (2 .2 )  u(t) = K.s ~v, 
t ,  ) 

(t) = ~ t  y "st~176 9 2 (ySsS + 57's', + 12Vs "4- 12) eS(t-x)d,8, 
s" + co o a (s) 

O) 

I t,, 0 < O,, 
t ,  = ttsp, 0 > O,, 

where O, =aresin?. is the critical angle of incidence of the transverse wave, t s = b(]/~ 
--Ro), tsp = b(?r q-h'VJ- 7~--Bot is the time of arrival of the transverse and sp-waves, re- 
spectively, at the point under investigation.: 

[ 6~g ~ 3g t , v < . r < t ,  ' P '  �9 
v(~)=  / 6~g , 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

g~. o,6 ,1,o 

F i g .  6 

[ t2afi 3 tsv < 7. < ts, 
= ~ ~R (D ~ '  

w (~) I ~ , 
t ~  t~<~. 

The expressions in the squa=e brackets are calculated by the method of reduction to real in- 
tegrals described in [3], say. The solution of the initial problem is a linear combination 
of problems "a" and "b". 

The following parameters were selected for the computations: ~ = i0 Hz, V s = 4000 m/sec, 
h = I00 m, Ro = i m, V =I/]/3 , and ~ remains arbitrary. The time in seconds is plotted along 
the abscissa, and the displacement referred to 0.01~ along the ordinate. Results of the 
computations are represented in Figs. 2 and 3 (solid lines) and 4. Represented in Figs. 5, 
3 (dashed line) and 6 are oscillograms of the displacement under the effect of a source of 
expansion-compression type with the same energy as the "thrust" source. 

3. The integrals in the square brackets in (2.1) and (2.2) are extremely complex to 
evaluate by the method of reduction to real integrals in the case of multilayered media; 
consequently, different asymptotic methods are used. 

The characteristic integral obtained because of the calculation of the displacement 
field, say, can be written in the form 

Ij (t) = 'kJj (kr) ~ L (s)7 (s) M (k, s) e't-q(a'S)ds} dk, (3.1) 

where the function L(s) is known from the solution of the boundary value problem, M(k, s) 
and q(k, s) are homogeneous functions of zeroth and first order, respectively, corresponding 
to a certain wave, and j = 0, i. Let us rewrite (3.1) by using the convolution integral 

t (s) e '(t-~)dsi r j (~) dT, l~(t)=.t {~ni S sL ) 10 (1) 
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Y~(t) = o ikJj(kr) ['f~7 !)[I ~(s)~est-q(h,t)ds}dk, 
to is the time of arrival of a given wave at the point under investigation. Let  us make 
a change of variable ~ =sb/k in Tj; then 

Now, by calculating the inner integral by the method of stationary phase [4] for ~t) =e~~ (t) 
and then integrating with respect to k, we obtain the asymptotic representation of Tj in 
the neighborhood of the wave front corresponding to the functions q and M 

0.5~Ej e''z0 4- Gj [e~"@ci ~0 -- te-~T~ 0'5~ + si oT0) ] 
Tj (t) (3. 2) 

uoY rlq" Go) l 

where iV. = q'(~o); ~ = t -- ~; Eo = G~ = Im [M(~o)/~o]; E~ = Go = Re [M(~o)/~o] ; and sl and ci 
are the integral sines and cosines. 

In conclusion, we note the following. 

I. Formulas (1.6)-(1.9) permit writing the potentials calculated in a spherical system 
in a cylindrical coordinate system, thereby affording a possibility of solving problems on 
the action of sources with inhomogeneous boundary conditions in laminar media with plane- 
parallel interfaces. 

2. Computations of displacements on a half-space surface showed: 

a) Under the action of a "thrust" source the amplitude of the displacement w is con- 
siderably greater than the amplitude u at distances comparable to the depth h; 

5) the build-up, i.e., agreement between the frequency of vibration of the point under 
consideration with the frequency of the boundary load, occurs from the time ~15ts; 

c) the amplitude of the displacement w under the action of a "thrust" source is 2-3 
orders greater for small angles of wave incidence than under the action of a compression- 
expansion type source with the same energy (Figs. 2 and 5, 8 = 0), which shows the advantage 
of the "thrust" source; as the angle 8 increases, the difference in amplitudes decreases 
(Figs. 4 and 6, 8 = 60~ 

d) the amplitudes of the displacement u differ insignificantly for the afore-mentloned 
types of sources (Figs. 3, solid and dashed lines, 8 = 60~ 

3. Asymptotic formulas of the type (3.2) can be used in the neighborhood of wave fronts 
to calculate displacement and stress fields in multilayered media under the effect of a vi- 
bration source. 
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